Cancer: facts and causes

Cancer is a class of diseases characterized by out-of-control cell growth. There are over 100 different types of cancer, and each one is classified by the type of cell that is initially affected.

Cancer harms the body when altered cells divide uncontrollably to form lumps or masses of tissue called tumors (except in the case of leukemia where cancer prohibits normal blood function by abnormal cell division in the blood stream). Tumors can grow and interfere with the digestive, nervous, and circulatory systems, and they can release hormones that alter body function.

Tumors that stay in one spot and demonstrate limited growth are generally considered to be benign.
More dangerous, or malignant, tumors form when two things occur:
1.    a cancerous cell manages to move throughout the body using the blood or lymphatic systems, destroying healthy tissue in a process called invasion
2.    that cell manages to divide and grow, making new blood vessels to feed itself in a process called angiogenesis.

When a tumor successfully spreads to other parts of the body and grows, invading and destroying other healthy tissues, it is said to have metastasized. This process itself is called metastasis, and the result is a serious condition that is very difficult to treat.
According to the American Cancer Society, Cancer is the second most common cause of death in the US and accounts for nearly 1 of every 4 deaths. The World Health Organisation estimates that, worldwide, there were 4 million new cancer cases and 8.2 million cancer-related deaths in 2012 (their most recent data).

How cancer spreads

Scientists reported in Nature Communications (October 2012 issue) that they have discovered an important clue as to why cancer cells spread. It has something to do with their adhesion (stickiness) properties. Certain molecular interactions between cells and the scaffolding that holds them in place (extracellular matrix) cause them to become unstuck at the original tumor site, they become dislodged, move on and then reattach themselves at a new site.

The researchers say this discovery is important because cancer mortality is mainly due to metastatic tumors, those that grow from cells that have traveled from their original site to another part of the body. These are called secondary tumors. Only 10% of cancer deaths are caused by the primary tumors.

The scientists, from the Massachusetts Institute of Technology, say that finding a way to stop cancer cells from sticking to new sites could interfere with metastatic disease, and halt the growth of secondary tumors.
Malignant cells and non-malignant cells

Scientists from the Physical Sciences-Oncology Centers, USA, reported in the journal Scientific Reports (April 2013 issue) that malignant cells are much “nimbler” than non-malignant ones. Malignant cells can pass more easily through smaller gaps, as well as applying a much greater force on their environment compared to other cells. Professor Robert Austin and team created a new catalogue of the physical and chemical features of cancerous cells with over 100 scientists from 20 different centers across the United States.

The authors believe their catalogue will help oncologists detect cancerous cells in patients early on, thus preventing the spread of the disease to other parts of the body. Prof. Austin said "By bringing together different types of experimental expertise to systematically compare metastatic and non-metastatic cells, we have advanced our knowledge of how metastasis occurs."

Causes of cancer

Cancer is ultimately the result of cells that uncontrollably grow and do not die. Normal cells in the body follow an orderly path of growth, division, and death. Programmed cell death is called apoptosis, and when this process breaks down, cancer begins to form. Unlike regular cells, cancer cells do not experience programmatic death and instead continue to grow and divide. This leads to a mass of abnormal cells that grows out of control.

Genes and DNA

Cells can experience uncontrolled growth if there are mutations to DNA, and therefore, alterations to the genes involved in cell division. Four key types of gene are responsible for the cell division process: oncogenes tell cells when to divide, tumor suppressor genes tell cells when not to divide, suicide genes control apoptosis and tell the cell to kill itself if something goes wrong, and DNA-repair genes instruct a cell to repair damaged DNA.

Cancer occurs when a cell's gene mutations make the cell unable to correct DNA damage and unable to commit suicide. Similarly, cancer is a result of mutations that inhibit oncogene and tumor suppressor gene function, leading to uncontrollable cell growth.

Carcinogens

Carcinogens are a class of substances that are directly responsible for damaging DNA, promoting or aiding cancer. Tobacco, asbestos, arsenic, radiation such as gamma and x-rays, the sun, and compounds in car exhaust fumes are all examples of carcinogens. When our bodies are exposed to carcinogens, free radicals are formed that try to steal electrons from other molecules in the body. These free radicals damage cells and affect their ability to function normally.

Genetic predisposition

Cancer can be the result of a genetic predisposition that is inherited from family members. It is possible to be born with certain genetic mutations or a fault in a gene that makes one statistically more likely to develop cancer later in life.

Cancer and other medical factors

As we age, there is an increase in the number of possible cancer-causing mutations in our DNA. This makes age an important risk factor for cancer. Several viruses have also been linked to cancer such as: human papillomavirus (a cause of cervical cancer), hepatitis B and C (causes of liver cancer), and Epstein-Barr virus (a cause of some childhood cancers). Human immunodeficiency virus (HIV) - and anything else that suppresses or weakens the immune system - inhibits the body's ability to fight infections and increases the chance of developing cancer.

Author: Peter Crosta / Sept. 2015
Text abridged and adapted / Dec. 2015
With kind permission to publish from MNT
To read the complete article, please go to: Medical News Today


You have general questions? Please share your questions or comments on our Board.